Задание №2
Страница 2

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. Для нормального распределения оценки меры рассеяния совпадают: Мо=Ме=М, в скошенном хвосты распределения не влияют на среднюю (М).

Таким образом, необходимо внимательно изучать форму распределения с точки зрения его отклонения от нормального.

II

. Используя понятия интегральной функции распределения и определенного интеграла можно записать

¦

(

x

) =

F

¢

(

x

) или

F

(

x

) =

p

(

x

1

<

X

<

x

2

) =

.

Если определяет заштрихованную область в соответствующих пределах, то

p (х

<

Х

<

х

+

D

х)

»

¦

(х)

D

х.

Это соотношение можно представить в виде простого геометрического толкования для каждого класса.

Рис. 1 График дифференциального распределения результатов проверки техники чтения в 7 классе

Рис. 2 Результаты дифференциального распределения результатов проверки техники чтения в 8 классе

Рис. 3 Результаты дифференциального распределения результатов проверки техники чтения в 9 классе.

Для дискретной случайной величины справедливо следующее равенство:

F

(

x

) =

P

(

X

<

x

) =

P

(

-

¥

<

X

<

x

) =

,

где суммирование распространяется на х

i

<

х.

В промежутке между двумя последовательными значениями Х функция

F

(х) постоянна. При переходе аргумента х через значение х

i

F

(х) скачком возрастает на величину p (Х

=

х

i

).

Рассмотрим p (х1

£

Х

<

х2). Если х2

>

х1, то очевидно, что

p (Х

<

х2)

=

p (Х

<

х1)

+

p (х1

£

Х

<

х2).

Тогда

p (х1

£

Х

<

х2)

=

p (Х

<

х2)

-

p (Х

<

х1)

=

F

(х2)

-

F

(х1),

т.е. вероятность попадания случайной величины в интервал

[

х1

;

х2) равен разности значений интегральной функции граничных точек.

Последнее условие можно использовать для нахождения вероятности p (Х

=

х1) для непрерывной случайной величины. Для этого рассмотрим предел

p

(

X

=

x

1

) =

,

т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.

Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х

Страницы: 1 2 3


Анализ результатов
В результате наблюдения выявила избирательное отношение детей группы друг к другу. Так как наблюдения велись за каждым ребенком отдельно, то удалось выявить взаимоотношения каждого со сверстником. Баранкова Илона никогда не конфликтует, уравновешена; Безлобов Дима – часто конфликтует из-за пустяков; Белая Оксана – играет со всеми, сама ...

Структура коллектива
Не углубляясь в рассмотрение структуры коллектива (это может быть предметом отдельного исследования), хочу отметить два уровня структуры коллективов: · внешняя структура - определяется деятельностью, · внутренняя структура - определяется общением. ...

Память
Памятью называют нашу способность припоминать прошлые события, поступки, людей, объекты, ситуации, усвоенные навыки и т. д. Она также имеет отношение к тому, как мы храним подобную информацию. В соответствии с классификацией Р.Аткинсона и Р.Шифрина, различают три подтипа памяти и связанных с ней процессов: 1) сенсорную помять, первичное ...